

22.3.2019 Kosice Conference on Landscape Recovery and Rehabilitation Rainwater Management: Experience from Berlin

Marco Schmidt Technische Universität Berlin/ Federal Institute for Research on Building, Urban Affairs and Spacial Development (BBSR)

Bloc 108 Berlin-Kreuzberg 1983

Careful Urban renewal: Bloc "108 Berlin-Kreuzberg" 1986

Flood in Germany 2013

.

I

II

H

H

Ann 11

=

.

П

=

.......

12.

watergy Water ---- Energy

www.watergy.de WWW.Watergy.eu

700 kWh/ m³ at 45 °C

Water heated from 30 to $90^{\circ}C = 70 \text{ kWh/m}^3$

Phase Change Material (PCM) = 61 kWh/m³

Global Radiation Balance

Data after physicalgeorgaphy.net

Urban Radiation Changes Example: Asphalt roof Berlin in Summer

berlin

Dramatic reduction in evapo-transpiration on land Daily loss of *800 km*² of vegetation worldwide

Daily deforestation rate:450 km²Daily reforestation:100 km²Net loss of forests daily:350 km²Daily ongoing global urbanization:150 km²Daily global desertification:300 km²

Size of Berlin: 890 km²

berlin

¿How much of the precipitation is converted to evaporation?

Catchment Berlin/ Brandenburg, Precipitation 580 mm

¿How much of the precipitation is converted to evaporation?

Catchment Berlin/ Brandenburg, Precipitation 580 mm

Large and small water cycle

www.waterparadigm.org (Kravcik 2007)

Stormwater management by swale infiltration

Increase of infiltration from 100 I/m² to 4000 I/m²

Not the first priority !

Infiltration needs to be combined with vegetation to increase evaporation !

Green Roof in Summer

Surface Temperatures Asphalt Roof – Green Roof (Infrared measurements)

Potsdamer Platz Berlin

Requirements by city administration and water supplyer:

Maximum drainage into the combined sewer system of less than 1% during stormwater

Background: 30-40 times per year overload of combined sewer in Berlin

Potsdamer Platz, Berlin

40,000 m² of greened roofs 2550 m³ in 4 tanks for toilet flush and fire fighting 12.000 m² urban lake, 1200 m² constructed wetland 3500 m² stormwater retention in lake (30 cm) Overall stormwater retention: 125 mm

Water storage in cisterns

Architects: Renzo Piano, Kohlbecker u.a. Landscape Architecture: Krüger/ Möhrle, Daniel Roehr, Berlin Urban Lake: Atelier Dreiseitl, Überlingen

Influential

- a) Demand by city water administration
- b) Landscape plan/ "Biotope Area Factor" BAF
- c) Berlins "Climate Change Adaptation Plan"
- d) Split in wastewater fee (but: not yet used as instrument !)

Prices Berlin:

 Water
 2,17 €/m³

 Wastewater
 2,46 €/m³

 Rainwater
 1,90 €/m²a (=3,80 €/m³)

Scientific Monitoring/ Evaluation 2002-2010 Berlin Senate for Urban Development 2011-2013: EnEff Stadt, BMWi via PTJ 2014-2016: INIS, BMBF via PTJ

Institute of Physics, Humboldt-University Berlin-Adlershof

Institute of Physics, Humboldt- University Berlin

Institute of Physics, Humboldt- University Berlin

Goal: Decrease of energy consumption of buildings by 2020: 50% !! But: Increase of energy consumption for cooling: 260%

Reasons for Global Increase in Cooling Demand

- **1:** Increase in use of glass
- **2:** Decrease in Heat Capacity, use of light materials
- **3:** Increase in electricity consumption
- 4: Increase in Urban Heat Island Effect
- **5:** Global Warming

Never use electricity to cool a building !

990 kWh Sensible Heat Released Outside

Primary Energy needed for Heating and Cooling

berlin

Win – Win – Win - Win

- Cheaper in investment
- Cheaper in operation
- Better performance for the building
- Better for the environment

Evaporative Exhaust Air Cooling

berlin

Difference in conv. energy consumption with and without evaporative cooling hottest day: 38°C => savings 70% expected annual savings => 90% berlin

Costs for Cooling

1 g H₂O: 2450 J = 2450 Ws a 100 °C 1 m³ = 2720 MJ = 700 kWh a 45 °C

Adiabatic: 1,06 € (0,185 €/kWh)

Compression: 90,24 € (0,185 €/kWh COP 2,05)

Absorption: 161,04 € (0,0376 €/kWh WZ 0,47)

> Use rainwater instead of tap water: no treatment for lime necessary !

	Conductivity	max
Rainwater	30 µS	1600 μS
Tap water	700 μS	1600 μS

Win – Win – Win

- Cheaper in investment
- Cheaper in operation
- Better for the environment

Combination of Measures:

infiltration with the goal of inrease of evaporation via vegetation Masterthesis Jana Milosovicova, TU Berlin

Í

K

Iras

berlin

perilin

Agadir, Morocco 5/2008

Agadir, Morocco today compared to descriptions by ancient Greek geographer Strabo: "all of the [land] between Carthage and the Pillars of Hercules [from Tunis to the Atlantic ocean] is of an extreme fertility."

Morocco was often singled out as *"one of the most beautiful and fertile countries of the earth"* and was frequently described as *"one of the granaries of Rome"*

Precipitation Rates Germany

peelin

Dramatic reduction in evapo-transpiration on land Daily loss of *800 km*² of vegetation worldwide

Daily deforestation rate:450 km²Daily reforestation:100 km²Net loss of forests daily:350 km²Daily ongoing global urbanization:150 km²Daily global desertification:300 km²

Size of Berlin: 890 km²

berlin

Large and small water cycle

www.waterparadigm.org (Kravcik 2007)

Global Energy Consumption in Relation to annual Radiation

Consumption and Resources of Energy

after Greenpeace / S. Krauter 2006

berlir

Annual Evaporation in Relation to Radiation

berli

Global Radiation in Relation of Evaporation (Latent Heat Flux)

berlir

Renewable Biomass ?

Thank you for your attention !

112

http://www.gebaeudekuehlung.de http://www.rainforclimate.com http://www.phasenwechsel.com **GEFÖRDERT VOM**

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Energie

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit